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seen that these modifications do not change the results of Theorem 
2.4, provided that the condition on the update law is satisfied for all 
Li and yi. 

The class of systems considered is fairly general, and a closer 
examination of the results reveals that what is essential is that when 
we apply an input to the system, we can observe a corresponding 
output, and we act upon this output with the learning operator. The 
stability of the system may affect the convergence rate, but not the 
actual convergence of the learning algorithm. 

It is important to remember that learning control is not a form of 
dynamic feedback. It cannot be used to stabilize a system nor to 
change its performance for a general trajectory. Therefore, in 
applications it is desirable to use a robust feedback controller to 
improve the system performance, and as explained earlier, this is 
the motivation for considering time-varying systems. Learning con- 
trol iteratively updates a feed-forward term to provide a finer and 
finer “open loop” performance along a specific trajectory-it is not 
intended to make up for a poor feedback controller design. 

In conclusion, we believe that the learning algorithm presented is 
applicable to a wide variety of problems. The stability of learning in 
the presence of disturbances and initial condition errors allows us to 
use the learning algorithm with confidence in applications. We 
further conjecture that these results can be extended to other update 
laws, allowing the differentiation to be replaced by say a lead filter 
with better noise response; this constitutes an interesting area for 
future research. 
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Discrete-Time Filtering for Linear Systems with 
Non-Gaussian Initial Conditions: Asymptotic 

Behavior of the Difference Between the 
MMSE and LMSE Estimates 

Richard B. Sowers and Armand M. Makowski 

Abstract- We consider the one-step prediction problem for discrete- 
time linear systems in correlated plant and observation Gaussian white 
noises, with non-Gaussian initial conditions. We investigate the large 
time asymptotics of e,, the expected squared difference between the 
MMSE and LMSE (or Kalman) estimates of the state at time t given 
past observations. We characterize the limit of the error sequence {e, ,  
t = 0, 1, . . . } and obtain some related rates of convergence: a com- 
plete analysis is provided for the scalar case. The discussion is based on 
explicit representations for the MMSE and LMSE estimates, recently 
obtained by the authors, which display the dependence of these quanti- 
ties on the initial distribution. 

I. INTRODUCTION 

Consider the time-invariant linear discrete-time stochastic system 

xo” = ( , x,., = A X ;  + w,., 
Y, = Hxp + V,.,, t = 0 ,  l ; . . ,  ( 1 . 1 )  

where the matrices A and H are of dimension n X n and n X k ,  
respectively. This system is defined on some underlying probability 
triple ( 9 ,  .F, P )  which carries all the random elements considered 
in this note. namely the ,?“-valued plant process { X p ,  t = 0, 
1,. . . , }, the Elk-valued observation process { Y , ,  t = 0, 1, . . . } 
and the il” + “valued noise process { ( W:+ I, V,“, I), t = 0, 1, . . . } .  
Throughout this note we make assumptions A. 1 -A.3,  where: 

A . l :  the process {(W:ll, VI”,). f = 0, 1, . . .  } is a stationary 
zero-mean il + k-valued Gaussian white noise sequence [2, p. 221 
with covariance structure r given by 

A.2: the initial state ( has distribution F with finite first and 
second moments p and A ,  respectively, and is independent of the 
noiseprocess {(W,‘+l, V,‘+I), t = O .  I ; . .} ;and 

A.3: the covariance matrices rL, and A are positive definite, thus 
invertible. 

For each t = 0, 1 , .  . . , we form the conditional mean X, ,  , := 
E[ Xy, I I Yo, Y,  , . . . , Y,]  or MMSE estimate of X;,, on the basis 
of { Y,,, Y , .  . . . , Y,} . In general, XI+ I is a nonlinear function of 
{ Yo,  Y , ,  . . . , Y , } ,  in contrast to the corresponding LMSE or Kalman 
estimate of X:+, which is by definition linear, and which we 
denote by XF+, . We then calculate E , + ,  := E [  1 1  X I +  I - X f i  11 ’1’ 
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which is an L2-measure of the agreement between the MMSE and 
LMSE estimates of Xp+ on the basis of { Yo,  Y ,  , . . . , Y , } .  

The goal of this note is to study the asymptotic behavior of E,  as 
the time parameter t tends to infinity. Noting the dependence 

6 ,  = e , ( ( A ,  H , I ' ) ,  F), t = 1 > 3  2 . . .  (1.3) 
we find it natural to parametrize our asymptotic analysis of in 
terms of the system triple ( A ,  H ,  r)  and of the initial distribution 
F. Of course, if F is Gaussian, the LMSE and MMSE estimates 
coincide and e r  = 0 for all t = 1, 2 , .  . . , and any system triple ( A ,  

We are interested in characterizing the limit of the error se- 
quence { E , ,  t = 0, 1, . . . } and in obtaining the corresponding rate 
of convergence (or bounds on it). In particular, we seek conditions 
under which the convergence lim, E,  = 0 takes place, and investi- 
gate the form of the corresponding rate of convergence and its 
dependence on the initial distribution F. Of special interest is the 
situation where exponential rates of convergence are available, i.e., 

lim, - log E ,  = - I  for some I > 0. Our most useful result along 

these lines is Theorem 5 below which is an immediate consequence 
of Theorem 4 and Proposition 3 discussed in Szction 111. TO state 
this result, we need the n x n matrices A and C which are defined 

H ,  r). 

1 
t 

- by 

A : = A  - rWUr;" and c := r ,  - rwL,ru-lrL,w. (1.4) 

Since c is the common covariance matrix of the estimation errors 
{WP, , - E[ W A  I 1 Vt", t = 0, 1, * . }, it is symmetric positive 
semidefinite, and its square root is thus well defined [2. Prop. 
D.1.3., p. 3711; let 

Theorem 5: Assume the pair ( A ,  H )  to be detectable and the 
pair ( A ,  cl/*) to be stabilizable. For any square-integrable distribu- 
tion F on 2", we have 

denote any such square root of E. 

lim,El((A, H , r ) ,  F) = 0 (1.5) 
and 

- 1  
Iim,-- log E , (  ( A ,  H ,  r ) , F )  5 2 log p (  K,) < 0 (1.6) 

t 

where K ,  is an asymptotically stable n x n matrix [given by (3 .5)]  
and p ( K , )  denotes its spectral radius. 

To the best of the authors' knowledge, no results have been 
reported in the literature on the large time asymptotics of t, for a 
general non-Gaussian initial distribution. Such a lack of results may 
be explained in part by the fact that the key representation result 
(Theorem 1) has been derived only relatively recently [4] -[7]. In 
any case, the work reported here provides a formal justification for 
the idea widely held by practitioners that short of first and second 
moment information, precise distributional assumptions of the initial 
condition can be dispensed with when estimating the state Xp+ I on 
the basis of the observations { Yo, Y , ,  . . . , Y , } .  This is a useful 
complement to Kalman filtering theory since in many applications, 
the initial distribution is a rather vaguely defined object. 

The organization of this note is as follows. In Section I1 we 
summarize a representation result for {E,,  t = 0, 1, . } which 
constitutes the basis for the analysis presented here. In Section 111, 
we investigate the asymptotic behavior of { E , ,  t = 0, 1, . . . } for a 
general multivariable system. Section IV is devoted to the derivation 
of a key technical result which is used in the discussion of Section 

111. This is followed in Section V by a more complete analysis of the 
scalar case (i.e., n = k = 1 ) .  

The following notation is used throughout. Elements of $in are 
viewed as column vectors and transposition is denoted by ', so that 
1 )  uI/ * = u 'u  for every U in 71". For any positive integer n ,  we 
denote by A,, the space of n x n real matrices and by 9, the 
cone of n x n positive semidefinite matrices. Moreover, let Z, and 
On be the unit and zero elements in A,,, respectively. For any 
matrix K in A,,, with sp ( K )  denoting the set of all eigenvalues of 
K ,  we set A,,,,, ( K )  := min{IX1:XEsp(K)} and A,,,,,, ( K )  := 
max { 1 h I : h E sp ( K ) }  ; it is customary to call A,,,,,, ( K )  the spectral 
radius of K and denote it by p ( K ) .  The mapping d,, + 2+ given 
by 

I1 K II op := SUP" # 0 - " K u ' l ,  K E . ~ , ,  (1.7) 

defines the norm on An induced by the Euclidean norm on >I". 
However, since all norms are equivalent on d,,, all limiting 
operations involving matrices can be safely understood entrywise. 

We denote by 8" the set of all square-integrable probability 
distribution functions on Bn with positive definite covariance ma- 
trix, and by gR the set of those distributions in &,, which have zero 
mean. For each matrix R in 9,, let GR denote the distribution of a 
zero-mean Tj "-valued Gaussian random variable with covariance R .  

I1 41 

11. A REPRESENTATION RESULT 

The basis for our analysis is a representation result for the 
sequence {et,  r = 0, I ,  . . } obtained in [5] ,  [6]. However, before 
stating this result, we find it useful to observe that there is no loss of 
generality in assuming E [ ( ]  = 0 or equivalently, in restricting 
attention to distributions F in g,,. Indeed, a simple translation 
argument [5 ,  Sect. VI.11 shows that for any square-integrable 
distribution F in L,, with mean p ,  the relation 

E ~ ( ( A ,  H , r ) , F )  = t r ( ( A ,  H , r ) , k )  t = 0, I ; . . ,  

(2.1) 

hold: for any triple ( A ,  H ,  r)  where k is the element of g,, given 
by F( x) := F( x - p )  for each x in ?? '. 

We now can state the needed representation result, the proof of 
which is found in [5], [6]. 

Theorem 1: Define the 9,-valued sequence { P,, t = 0, 1 ,  . } 
by the recursions 

Po=O,, ,P,+I = A P I A ' -  [ A P , H ' + r , , ] [ H P , H ' + r , ] - '  

. [ A P , H ' + ~ , , ] ~ + ~ ,  t = o , i , . . .  . (2.2) 

Moreover, let the deterministic sequences { QT, t = 0, 1, - . } and 
{RT,  t = 0, 1, . . '  } in A,, and 9,, respectively, be defined 
recursively by 

eo* = zn, e;+, = [ A  - [ AP,H + rWu] 
. [ H P , H ' +  r U ] - ' H ] Q :  t = 0 ,  l ; . . ,  (2 .3)  

and 

R,* = On, RT,, = RT + QT'H'[ H P , H  + ru] - 'HQ;  

t = 0, 1 ,  * . .  . (2.4) 
For any distribution F in 9,,, the representation 

"2 
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holds true for each t = 0, 1 ,  ... . 
In order to rewrite (2.5) in a more manageable form, we associate 

with each distribution F in g,,, the mapping I,:A, x d , + a  
defined by 

Next, we set 

= J an / 112- [ R + A - ' I - ' b I 1 2  
~ _ _ _ _ _  

for all K in An and R in 2,. We show in Proposition 1 below 
that (2.6) is always well defined and finite owing to the finite second 
assumption A.2 on E .  

With this notation, (2.5) may be rewritten as 

E ,  = ZF(QT, RT) t = 1 , 2 ,  . . .  . (2.7) 
This representation clearly separates the dependence of E ,  on the 
system triple ( A ,  H ,  r)  from the dependence on the initial 
distribution F ;  the distribution F affects E ,  only through the struc- 
ture of the functional I,, whereas the system triple and time affect 
et  only through QT and RT. 

We conclude this section by showing that (2.6) is indeed well 
defined and finite. For ease of exposition, we set 

(2.8a) 
and 

(2.8b) 

d ( z ,  b ;  R I : =  exp [ z 'b  - +Z 'RZ]  

@ ( b ;  R) :=  J' + ( z ,  b ;  R )  dF(z) 
$2 

for all b,  z in $2, and all R in 9,. 
Proposition I :  Let F be a distribution in 9,. For all K in .1, 

and R in 4,, the quantity Z,(K, R )  is well defined and finite, with 
alternate representation 

dF(z) + ( b ;  R )  dG,(b) < 0 0 .  Ill d( z ,  b ;  R )  
@ (  b;  R )  

(2.9) 
Proof: Fix K in dl,, and R in 9,. Observe that whenever b 

lies in the range Im ( R )  of R , the quadratic form in the exponent of 
4 in (2.8) is amenable to a completion of squares, namely 

1 
z ' b  - 4z 'Rz = ;b 'R#b  - - ( z  - R # b ) ' R ( z  - R # b ) ,  

2 
 LE^", b E I m ( R )  (2.10) 

where R # denotes the Moore-Penrose pseudoinverse of R [ 1 ,  
pp. 329-3301, Consequently, @(b;  R )  is finite for each b in 
Im(R)  since 4 ( z ,  b; R )  < exp[$b 'R*b]  for b in I m ( R )  and z 
in 2". This bound and the finite second moment assumption A.2 on 

together imply that the inner integral in (2.6) is well defined and 
finite for each b in Im(R) .  Therefore, since the support of the 
Gaussian distribution G, is exactly Im ( R )  and since +( b; R )  < 03 
for b in Im ( R ) ,  we conclude that IF( K ,  R )  is indeed well defined 
and that the representation (2.9) holds. 

To show that I F ( K ,  R )  is finite, we first observe from Jensen's 
inequality that 

.exp[z'b] dGR(b)  exp[  - i z ' R z ]  d F ( z )  (2.12) 

where the last equality follows from Tonelli's theorem. It is now 
plain from (2.9) and (2.11) that 

ZF(K> R )  5 IIK112,,JF(R). (2.13) 
However, after some tedious calculations, we find that 

1 

JF(R) = t r ( [ R + A - ' ] - ' R [ R + A - ' ] - ' )  

+ L i n z ' A - ' [  R + A- ' ]  -I[ R + A - ' ]  - ' A - ' z d F  ( z )  < 00 

(2.14) 
since E has finite second moments, whence JF( R) is finite and so is 

rn ZF(K,  R )  as a result of (2.13). 

111. SOME CONVERGENCE ESTIMATES 

We shall analyze the asymptotic behavior of { E , ,  t = 0,  1, . . . } 
by making use of the representation (2.7). This requires that we 
study the behavior of Z, under the joint asymptotic behavior of 
{QT,  t = 0,  I ,  . . .  } and {RT, t = 0, 1 ,  . . .  }. However, defining 
the mapping IF:  9, + 8 by 

IF(R):= ZF(Zn ,  R ) ,   RE^, (3.1) 
we observe the inequalities 

L , , ( Q T ' Q T ) I F * ( R T )  5 € , ( ( A ,  H J ) J )  

5 A,,,,,(Q:'q:)Z,*(RT) t = 1 , 2 ,  e . * .  (3.2) 

In effect, (3.2) shows how to bound E ,  in such a way as to 
separately consider the asymptotic behavior of { QT, t = 0,  1 ,  . * . } 
and the asymptotic behavior of 1; as { RT, t = 0,  1 ,  . . . } tends to 
its limit. We focus our attention first on the asymptotics of {QT,  
t = 0 ,  l ; . . }  and {RT, t = 0 ,  l ; . . } ,  and then study the 
behavior of 1; as RT asymptotically behaves in a well-defined 
way. 

To simplify the notation, we define the matrices { K , ,  t = 0,  
1 ,  . . . 1 as the elements of An given by 

K ,  := A - [ AP,H' + I?,,,,] [ HP,H'  + r,] - ' H ,  

t = 0, I ; , , ,  (3.3) 
so that the recursion (2.3) may now be rewritten in the form 

Q,* = Z,,,QT+, = K,QT t = 0,1 ,  . . * .  (3.4) 

We observe [3, Thm. 5.2(a), p. 1711 that 0 5 P, 5 P,+l for all 
t = 0, I ; . . ,  whence for each U in 2". 0 s u'P,u 5 U ' P , + ~ U  and 
lim, V' PI V always exists, although possibly infinite. As this may 
not imply the convergence of the iterates { P , ,  t = 0, 1 ,  . . . } [ I ,  
Prop D.1.4., p. 3701, we find it convenient to introduce the 
following assumption C. 1 .  

C. I :  The sequence { P I .  t = 0, 1,  . . . } has a well-defined limit 
p*. 
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In that case, the sequence { K , ,  t = 0, 1, .. . } also has a 
well-defined limit K ,  which is given by 

K ,  := A - [ AP," + r,,,"] [ HP,H' + r,] - I H .  (3.5) 

Conditions for C. 1 to hold are given in Proposition 3. We are now 
ready to present the basic estimates. 

Theorem 2: Under C . l ,  we have the following estimates. The 
upper bound 

- 1  
lim, - log A,,,,,, (QT'QT) 5 2 log p (  K , )  t 

(3.6a) 

always holds. The lower bound 

1 
21og A,,,in(Km) 5 @ r  7 log A,,,,, (QT'QT) (3.6b) 

holds provided either K ,  is noninvertible or the matrices { K , ,  
t = 0, 1, 

It is worth pointing out that if K ,  is not invertible for some 
t = T ,  then QT is not invertible for all t > T by virtue of (3.4) 
and the lower bound (3.6b) cannot hold with K, invertible. Before 
giving a proof of Theorem 2, we recall that A,,,,,(K'K) = 1 1  K 1 1  '0, 
for any matrix K in A,,. 

Proof: For every N = I ,  2 , .  * . , we define Z:"' := K 
.. . K ( J - I ) N  for j = I ,  2, . . . . As the recursion (3.4) implies 
Q* = Z j N )  . . . Z!" for all j = I ,  2; . . , we readily see that 

} are all invertible. 

I N -  I 

JN 

1 1 j  
- log II e,*, I/ op 5 7 C log II Z,"'I/ op 
j J ; = I  

j = 1 , 2 .  . . .  . (3.7) 
Since matrix multiplication is continuous in the matrix norm (1.7), it 
is thus plain from C. l  that lim, Zj") = K N  ,, whence lirn, 
11 Z:"'II op = 11 K:I( o p ,  and the estimate 

- 1  
h, 7 1% I/ QTN 1 1  OP 

J 
log 1 1  K,"ll OD 

N = 1 , 2 .  . . .  (3.8) 

follows from (3.7) by Cesaro convergence. 
Fix N =  1 , 2 . . . . F o r e a c h t =  1,2; . . , thereexis tsaunique 

nonnegative integer j,(I) such that j , ( t)N < I 5 ( j N ( t )  + 1)N. 
Upon iterating (3.4), we get QT = K, - I . . . K ,,( r , N  for all I = I ,  

QL(,], I /  opr and the inequality 

1 

2 , .  . . from which I1 QTII op 5 / I  Kr - I I1 o p  * . . I1 K II o p  I /  

1 ( j ~ ( r ) +  I)N- 1 

-~ogIIQTIIop 5 7 c l ~ ~ ~ l l ~ s l l o p l  
t s = jN(c)N 

readily follows. Now, since lim, j , , , ,  = 03 monotonically and 
lim, / I  K, 11 op = I/ K, 1 1  Opr  we obtain 

1 1 (j ,v(t)+ 1)N- I 

limr - C IIog IIKsII o p  I 5 limr 7~ I log II KmII u p  I = 0 
s=jN(f )N 

(3.10) 

On the other hand, the fact lim, - j N ( t )  - - - and the estimate (3.8) 

lead to 

1 

I N  

Collecting (3.9)-(3.1 l ) ,  we get 

- 1  1 
l i m f ~ l o g ~ ~ Q ~ ~ ~ o p ~  * logI IKcIIop  N =  1 , 2 , * * * ,  

(3.12) 

and (3.6a) then follows by letting N become large in (3.12) since 

limN ( 1 1  K,"ll O p )  

As we now turn to the proof of (3.6b), we notice that only the 
case K, invertible needs to be considered for otherwise the result is 
trivially true. If we assume that K ,  is invertible for all t = 0, 
I; * a ,  then Q: is also iyertible for all t = 0, 1, . . * . Upon 
setting K ,  = ( K ; ) - '  and Q, = (QT)-' for all t =*O, I ; . . ,  we 
observe that (3.4) is equivalent to the recursion Q;+I = K,Q;, 
t = 0, 1,. . . , whence 

- 1  
lim, - log 1 1  Q; 1 1  $, 5 2 log p (  k-) (3.13) 

I 

by the arguments leading to (3.6a). From basic arguments, we see 
that e(&,) = p ( K ; ' )  = A,,,,, ( K J '  and that l \ Q ~ l l ~ p  = 
A,,,,,, (Q,Q;) = A,,,,,, ((QT'QT)-') = L," (QT '€?TI-' for each = 
0 ,  1, . * .  . These facts, when used in (3.13), immediately imply 
(3.6b). 

To see the implications of Theorem 2 on the asyrnptotics of { E , ,  
t = 0,  1,  . . * 1, we shall need the following fact. 

Proposition 2: For every distribution F in Qn, we have 
suprZ,* (RT) < W .  

Proof: Since 0 5 RT 5 RT, I for all I = 0, 1, .  . . , we con- 
clude from (2.14) that sup,J,(RT) < - and the result follows 

Note that in Proposition 2 we did not impose the requirement that 
the sequence {RT, t = 0,  1, .. . } be convergent. In analogy with 
C. 1, we introduce assumption C.2. 

C.2: The sequence { RF, t = 0, 1, . . . } has a well-defined limit 
R: which is positive definite. 

Theorem 3: Assume C . l .  We have the following estimates for 
every non-Gaussian distribution F in Y,,. The upper bound 

I 
- 

= p(K,) [8, p. 271 and Thm. 3.8, p. 2841. 

from (2.13). 

- 1  
lim, - log E ,  5 2 log p (  K,) 

t 
(3.14a) 

always holds. If in addition C.2 holds, then the lower bound 

1 
2 log A,,,," (K,) 5 @, 7 log E ,  (3.14b) 

holds provided either K, is noninvertible or the matrices { K , ,  
t = 0,  1, . . . } are all invertible. 

Proof: The upper bound (3.14a) follows from (3.2) and (3.6a) 
with the help of Proposition 2. Under C.2, Theorem 6 of Section IV 
implies lim, Z:(RT) > 0 for F non-Gaussian and (3.14b) now 

We now present some simple implications of Theorems 2 and 3 
on the asymptotics considered here. For future reference, we note 
from (2.4) that 

R T =  1 Q ~ ' H [ H P s H + r , ] - ' H Q :  I =  1,2; . . . (3 .15)  

follows from (3.2) and (3.6b). 

t -  I 

s = o  

Theorem 4: Assume C .  1. If p (  K,) < , then; 
1) the sequence {QT, t = 0, 1, * .  . } converges with lim, 

2) the sequence { RF, t = 0, 1, . *  * } has a well-defined limit 

3) for all non-Gaussian distributions F in P,,, the convergence 
lim, E ,  = 0 takes place at least exponentially fast according to 
(3.14a). 

Proof: From (3.6a) and the fact that A,,,,,, (QT'QT) = I/ QTl/ '0, 

QT = 0;  

R:; 
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- 1  

t 
for all t = 0, 1,. . . , we readily obtain lim, - log I /  QT 1 1  op < 0, so 

that the convergence lim , I/ QT 1 1  o p  = 0 takes place at least exponen- 
tially fast. Claim 1 now follows from the fact that all norms are 
equivalent on A,,. 

To obtain claim 2, we note that (3.15) that 

s < t s, t = 0, I ; . . ,  (3.16) 

and since lim, 1 1  QTII op  = 0 at least exponentially fast, the sequence 
{RT, t = 0, 1, . . .  } is Cauchy, thus convergent, in the matrix 
norm (1.7). The norm equivalence invoked earlier completes the 

W 
We conclude this section with a set of sufficient conditions which 

ensure C. 1 as well as the condition p (  K,) < 1. 
Proposition 3: If the pair ( A ,  H )  is detectable, then C . l  holds. 

If, in addition, the pair (A, c'/') is stabilizable, then the matrix 
K ,  is asymptotically stable, i.e., p ( K , )  < 1. 

Proof: The first claim is [3, Thm. 5.2b, p. 1721, while the 
W 

proof of claim 2. Claim 3 is immediate from (3.14a). 

second claim follows from [3, Thm. 5.3, p. 1751. 

IV. A PARTIAL CONVERSE 

In this section, we present the key technical fact required in 
proving (3.14b). This result provides an indirect characterization of 
the initial condition as a Gaussian random variable. 

Theorem 6: Assume C . 2 .  For any distribution F in 9,,, the 
condition lim, Z,*(RT) = 0 implies that F is necessarily Gaussian. 

Proof-First we introduce the distribution F in li, which is 
absolutely continuous with respect to F and whose Radon-Nikodym 
derivative is given by 

The moment generating N of F is simply 

N ( b ) : =  1 e x p [ z ' b ]  dF(z), b~ 2" .  (4.2) 
' il" 

Since the matrix R: is positive definite, there exists a finite 7 
such that for t = T, T + 1,;. ., the matrix RT is also positive 
definite and thus G,: is absolutely continuous with respect to 
Lebesgue measure X on ? I " .  Applying Fatou's lemma to (2.5), we 
see from the assumption lim, Zz( RT) = 0 that - 

( z -  [RT + A - ' ] - ' b } O ( z , b ; R T ) d F ( z )  
lim, 
- @ ( b ;  RT) 

Under C.2, for each b in A", we have lim, - dGR7 ( b )  = 
d h  

5 (6) > 0 and l im,@(b;  RT) = @ ( b ,  R z )  > 0, with the last 

following by monotone convergence. We now conclude that 
dX 

or equivalently, 

~ l n z O ( z l  b;  R:) @(z) 

= [ R : + A - ' ] - '  b L i n 4 ( z ,  b ;  R:) d ~ ( z )  x - a.e.  

(4.5) 

Upon dividing (4.5) by 
that N must satisfy the conditions 

exp [ - iz'R:z] dF( z) ,  we readily see 

V,N(b)  = [ R z  + A-']-'bN(b), 
be ;in with N ( 0 )  = 1 ; (4.6) 

the technical details are found in [5, Sect. VI.21. 
The unique solution of (4.6) is 

N ( b )  = exp [ $ b ' [  R z  + A - ' ]  - ' b ] ,  L I E  ii" (4.7) 

so thatAf= is zero-mean Gaussian with covariance [RA: + A - ' ] - ' .  
Since F has positive definite covariance, we see that F is absolutely 
continuous with respect to X and, therefore, F must be absolutely 
continuous with respect to X by virtue of the mutual absolute 
continuity of F and F .  After some straightforward calculations, we 
find 

dF dF dF 

dX dF dX 
- ( z )  = - ( z ) .  - (z)  = cexp 

Z E  ;ln (4.8) 
for some positive constant c, i.e., the distribution F is Gaussian. 

As an immediate consequence of Theorem 6 and of the lower 
bound in (3.2), we observe that under condition C.2, whenever a,,, (QT'QT) > 0 for all t sufficiently large, the distribution F is 
necessarily Gaussian if 

V.  THE SCALAR CASE 

In this section, we focus exclusively on the scalar case n = 1.  
We use lower case letters for all deterministic quantities. Moreover, 
to conform to standard usage, we also set y, = U,', yw = U:, and 
yuw = y W ,  = y with U,' > 0, so that 

ii := a - 7 
y h  , Y 2  and 5. := U; - - 2 0. ( 5 . 1 )  
0"- 0" 

With this notation, we can rewrite the recursions (2.2)-(2.4) as 

and 

Moreover, the representation (2.7) now takes the form 

E ,  = (qT)2Z,*(r:). F E  9, t = 1 , 2 ,  . . .  . ( 5 . 5 )  
As we shall see, the scalar nature of the recursions (5.2)-(5.4) 

= 0 h - a.e.  (4.4) permits simpler arguments which are not available in the multivari- 
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able case. Although Theorem 5 might be suggestive of a taxonomy 
based on the detectability of ( a ,  h)  and the stabilizability of (C, 
.?I/’), a more direct classification will emerge from our discussion 
of the scalar situation. We need only consider four possibilities 
parametrized by h ,  G, and C, and start with an obvious degeneracy. 

Proposition 4: If either 2 = 0 or h = 0. then E ,  = 0 for all 
t = 1, 2, .  . . , and all distributions F in t , .  

Proof: Fix F in 9,. If G = 0, then 4: = 0 for all t = I ,  
2; . * ,  by (5.3), and (5.5) therefore implies E ,  = 0 for all t = I ,  
2, ... . On the other hand, if h = 0, then (5.4) leads to r: = 0 for 
all t = 0, 1;. ., so that E ,  = 0 for all t = I ,  2 ; .  . ,  by direct 
evaluation of (2.6). We translate these results from 5, to C ,  by 

We now consider the more interesting situation where both 
conditions G # 0 and h # 0 are assumed. in which case 4: # 0, 
r: > 0, and E ,  > 0 for all t = 1, 2;. .. . We rewrite (5.2) as 
p ,  + , = T( p , )  where the mapping T:[O, CO) + il is given by 

making use of (2. I ) .  

Since 

we conclude that T is concave and nondecreasing on [0, C O ) .  

Hence, the iterates { p, ,  t = 0, I ,  . . + } form a nondecreasing. thus 
convergent, sequence with limit point p ,  in [O, CO). The finiteness 
of p ,  is an easy consequence of the relation p ,  = T(  p,) which 
must necessarily hold. 

Consequently, the sequence { k , ,  t = 0. I ,  . . . } has a limit k, 
given by 

Go,’ 
k ,  := 

h’p, + o,’ 
with 1 k ,  1 > 0 since C # 0 and p ,  < a. The convergence of the 
sequence { p, ,  t = 0, 1,  . . . } and (5.3) readily imply the Cesaro 
convergence 

(5.9) 

It is then easy to see from (3.15) and (5.9) that if 1 k, I < I ,  then 
r: := lim, r: is well defined and finite, whereas if I k ,  1 1 I ,  
then lim , r,* = 00. We now make use of these observations to prove 
the following result. 

Proposition 5: We assume both h # 0 and G # 0. If either 
C # 0 or T = 0 with 1 C /  < I ,  then 1 k,l < 1 and lim, E ,  = 0 

1 
with lim, - log E ,  = 2 log 1 k ,  1 < 0 for all non-Gaussian distribu- 

t 
tions F in 6 , .  

Proof: Prompted by the remarks made earlier. we begin by 
showing that 1 k ,  I < 1 under the stated conditions. If T = 0. then 
p ,  = 0 for all t = 0, 1,. 1 . , so that p ,  = 0 and the conclusion 
I k ,  I 5 1 ii < 1 follows when I G I  < 1. If T # 0, then necessar- 
ily T > 0 and therefore p ,  > 0 (since T = p ,  5 p, ) .  Conse- 
quently, p ,  is the only finite solution to the fixed point equation 
T ( p )  = p on (0, a), and geometric considerations based on the 
concavity and monotonicity of T readily lead to T ’ ( p , )  < 1. The 
conclusion I k ,  1 < 1 now follows from the fact that T’(p,) = k k .  

As pointed out earlier, here qr # 0 and r: > 0 for all r = 0, 
1,. . . , whence r: > 0 since { r:. t = 0. I .  . . . } is an increasing 

sequence. On the other hand, we saw earlier that 1 k ,  1 < I implies 
r: < CO. Therefore, from Proposition 1 and Theorem 6. we ob- 
tain o < Iim,t:(r,*) I lim rI:(r,?) < CO for every non-Gaussian 

F in 3,. As a result, l im, - log ti = lim, - log (q:)’ = 

2 log 1 k ,  1 < 0 for all F non-Gaussian in i/ , , and thus in i, , by 
translation. 

Notice that Proposition 5 is almost a direct consequence of 
Theorem 3 since in the scalar case, we have A,,,,, (k,) = p( k,) = 

1 k ,  1 ,  and we need only establish that conditions C. 1 and C.2 hold 
true under the assumptions of Proposition 5.  We found it interest- 
ing, however. to provide a direct argument tailored to the scalar 
case. 

It now remains to investigate the case ? = 0 and I Cl 2 1 ,  still 
with h # 0. We shall sec that the initial state distribution F has a 
nontrivial effect on the large time asymptotics of { E , ,  t = 0, 1, 
2 , .  . . , }. A priori, it would seem natural that the initial distribution 
F should have some effect on the asymptotics of the mean squared 
error between the MMSE and LMSE filters. However. in both cases 
considered thus far in Propositions 4 and 5,  the effect of the system 
parameters ( a ,  h ,  I’) have dominated these asymptotics. Only when 
T = 0 and I C( 2 I ,  does F have a significant effect. We shall 
establish this dependence by performing a complete analysis for two 
specific initial distributions F ,  and by noting the different asymp- 
totics of { c l ,  t = 0,  1, . . . } .  We first verify a general result which 
complements Proposition 2. 

4 
Proposition 6: For any distribution F in 5 I ,  we have I:(r) S - 

r 
for all r > 0 so that lim, I:(r)  = 0. 

Proof: We note that the functional I: is independent of the 
system dynamics (a ,  h.  r). Consequently, for the purpose of 
argumentation, we can take the system ( I .  I )  to be 

- 
1 1 

t t 

xp = t ,  Y, = + v,“,, t = 0, l:.., (5.10) 

with a = h = I ,  o: = y = 0. U,’ > 0. For this system, 4: = 1 ,  
t 

r,* = 7.  and E ,  = I: [ $1 for all t = 0, I ,  . * . . We now set 

x,+, := - ’ 2 Y, t = 0 , 1 , ; . . ,  (5.11) 
t +  1 s=lJ 

and observe that since 2, + is a linear estimate of Xp+ , on the 
basis of { Yo, .  . . , Y,} ~ it has larger mean squared error than both 
the LMSE estimates X,“, I and the MMSE estimate X ,  + , . There- 
fore, using the triangular inequality, we readily find 

E [  I kr+, - ~ F + I  I ’ ]  5 4 E [  I %,+I ~ x:+l I ‘1 
t = 0. I ; , . ,  (5.12) 

so that 

t = 1 , 2 . . .  , (5.13) 

and the result follows since u t  is arbitrary. 

9,. 
We now consider the following two distributions F,  and F2 in 

Distribution F,: Distribution F, admits a density with respect to 
Lebesgue measure h on A given by 

(5.14) 
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where p > 0, 0 < ai < 1 for i = 1 ,  2;..,  m, E,:, a ,  = 1 ,  and 
, a,pi = 0. We exclude the case where F, is actually Gauss- 

ian. 
Distribtion F,: Under F 2 ,  the RV [ takes on a finite number of 

values z ,  < z2 . . . < z ,  with probabilities p , , p z  , . . . , pm,  re- 
spectively, such that 

The following two facts are proved in [ 5 ] .  
Fact 1: We have 

, p i z i  = 0. 

for some K > 0. 
Fact 2: We also have 

1 + o(1)  
I z 2 ( r )  = ____ , r > 0 .  

r 
(5.16) 

We now can prove the following results. 
Proposition 7: If h # 0, I iil = 1, and C = 0, then lim, E ,  = 0 

for any distribution F in A,, with hm,- log E,  5 0. This conver- 

gence takes place at a rate which depends nontrivially upon F for 
non-Gaussian F .  

Proof: Under the stated hypothesis, we have p ,  = 0, (4;)’ = 

- 1  

t 

h2 

0, I 
1, r: = I t ,  and E ,  = Z: for all t = 0, l ; . . ,  and all F 

in Y , ,  the extension to 6, being as before. The conclusions 

lim, E ,  = 0 and lim, - log E ,  5 0 are immediate consequences of 

Proposition 6 .  However, direct calculations show that if F = F, ,  

then lim, t2E, = -, whereas if F = F2,  then lim, t E ,  = 1 (so that 

w 

- 1  

t 

K 

P2 
1 

t 
lim, - log E, = 0 in both cases). 

And finally, we have the following. 
Proposition 8: If h # 0, 1 31 > 1 ,  and C = 0, then h, < 03 

for all distributions F in 6”,, the asymptotic behavior depending 
nontrivially upon F for non-Gaussian F .  

Proof: Under the stated hypotheses on ( a ,  h, F) ,  p ,  = 0, 

( q T ) 2  = ~ 2 ‘ ,  r,* = - ___ for all t = 0, 1, . . .  . Thus, 
a,’ a2 - 1 

lim, r,* = 03 with lim, ( q T ) 2 / r f  = a,’(.’ - 1 ) / h 2  and we are lead 
to write 

h2 c2, - 1 

t = 1 , 2 ,  (5.17) 

- where the inequality follows from Proposition 6. We now see that 
lim, E ,  < rn for all F in g, ,  and thus for all distributions F in 8,. 
However, if F = F l ,  then lim, E ,  = 0, whereas if F = F2, then 

We conclude with the following remark which is also valid in the 
multivariable case and which complements some of the results 
obtained so far. By an argument similar to the one leading to (5.12) 
we readily see that for each 6 > 0 

lim, E ,  = 1. w 

E , S ~ E [ ) X P - X ~ ~ ~ ]  = 4 p f  t = 1 , 2 ; . .  (5.18) 

where the error variance { pp, t = 0, 1, . . . } are generated through 
the recursion (5.2) with initial condition p: = 6. The sequence 
{ pf, t = 0, 1 ,  . . . } is either monotone nondecreasing or monotone 
nonincreasing, thus convergent, with limit point p:. Therefore, 
whenever p: < 00, we conclude by inspection that 

~ , ~ 4 m a x { 6 , p ~ }  t =  1,2; . .  . (5.19) 

In particular, under the conditions of Proposition 8, i.e., h # 0, 
h2 

1 a (  > 1, and C = 0, we have (5.19) with p: = .,‘(a2 - 1 )  (a 

fact in agreement with the conclusion of Proposition 8). 
As all possible combinations of 8,  C, and h have now been 

considered, a careful review of o_ur analysis suggests the fo!lowing 
classification. For any matrices A and C in .I,, the pair ( A ,  C) is 
said to be marginally stabilizable if all modes which are neither 
stable nor critically stable, are in the controllable subspace. Equipped 
with this notion, we can now rewrite the results of this section in 
terms which are also meaningful for the multivariable case. As 
such, this formulation provides a useful starting point for investigat- 
ing the asymptotics in the nonscalar case. 

Theorem 7: We have the following convergence results: 
la) if the pair (Z, C), is marginally stabilizable, lim, E, = 0 for 

lb) if the pair (3, C) is not marginally stabilizable, then the 

Moreover, we also have the following estimates: 
2a) if (3, C) is stabilizable, then lim, E ,  = 0 at an exponential rate 

2b) if (ii, I?) is marginally stabilizable but not stabilizable, then 

any distribution F in 6,; 

asymptotic behavior of E ,  depends nontrivially upon F in 6,. 

independent of F for non-Gaussian F in 6,; 

the rate depends nontrivially upon F .  
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